During the secondary injury period after traumatic brain injury (TBI), depolarization of neurons mediated by voltagegated sodium channels (VGSCs) leads to cellular abnormalities and neurological dysfunction. Alterations in expression of different a subunits of VGSCs can affect early brain pathology following TBI. This study detected the expression of Nav1.3 mRNA and protein in the rat cortex post-TBI. Adult male Sprague-Dawley rats were randomly assigned to sham-TBI, mild-TBI (mTBI), or severe-TBI (sTBI) groups. TBI was induced using a fluid percussion device at magnitudes of 1.5-1.6 atm (mTBI) and 2.9-3.0 atm (sTBI). Nav1.3 mRNA and protein levels in the ipsilateral-injured cortex were examined at 2 h, 12 h, 24 h, and 72 h post-TBI by real-time reverse transcriptase quantitative polymerase chain reaction and Western blot. Brains were collected at 24 h, 72 h, and 7 days post-TBI for TUNEL staining and cell count analysis. Immunofluorescence was performed to localize expression of Nav1.3 protein in the ipsilateral-injured cortex. Expression of Nav1.3 mRNA and protein were significantly upregulated in mTBI and sTBI groups when compared with the sham-TBI group at 2 h and 12 h post-TBI. Nav1.3 mRNA and protein levels in the sTBI group were much higher than in the mTBI group at 12 h post-TBI. TUNEL-positive cell numbers were significantly higher in the sTBI group than in the mTBI at 24 h, 72 h, and 7 days post-TBI. Expression of Nav1.3 was observed predominantly in neurons of the cortex. These findings indicated significant upregulation in the expression of Nav1.3 mRNA and protein in the rat ipsilateral-injured cortex at the very early stage post-TBI, and were also correlated with TBI severity.