Methylamine dehydrogenase (MADH) catalyzes the oxidative deamination of methylamine to formaldehyde and ammonia. Tryptophan tryptophylquinone (TTQ) is the protein-derived cofactor of MADH that is required for these catalytic activities. TTQ is biosynthesized through the post-translational modification of two Trp residues within MADH, during which the indole rings of two Trp side chains are cross-linked and two oxygen atoms are inserted into one of the indole rings. MauG is a c-type diheme enzyme that catalyzes the final three reactions in TTQ formation. In total, this is a six-electron oxidation process requiring three cycles of MauG-dependent two-electron oxidation events using either H2O2 or O2. The MauG redox form that is responsible for the catalytic activity is an unprecedented bis-Fe(IV) species. The amino acids of MADH that are modified are ~ 40 Å from the site where MauG binds oxygen, and the reaction proceeds by a hole hopping electron transfer mechanism. This review will address these highly unusual aspects of the long range catalytic reaction that is mediated by MauG.