Arginase is a binuclear manganese metalloenzyme that serves as a therapeutic target for the treatment of asthma, erectile dysfunction, and atherosclerosis. In order to better understand the molecular basis of inhibitor affinity, we have employed site-directed mutagenesis, enzyme kinetics, and X-ray crystallography to probe the molecular recognition of the amino acid moiety (i.e., the α-amino and α-carboxylate groups) of substrate l-arginine and inhibitors in the active site of human arginase I. Specifically, we focus on: (1) a water-mediated hydrogen bond between the substrate α-carboxylate and T135, (2) a direct hydrogen bond between the substrate α-carboxylate and N130, and (3) a direct charged hydrogen bond between the substrate α-amino group and D183. Amino acid substitutions for T135, N130, and D183 generally compromise substrate affinity as reflected by increased KM values, but have less pronounced effects on catalytic function as reflected by minimal variations of kcat. As with substrate KM values, inhibitor Kd values increase for binding to enzyme mutants and suggest that the relative contribution of intermolecular interactions to amino acid affinity in the arginase active site is: water-mediated hydrogen bond < direct hydrogen bond < direct charged hydrogen bond. Structural comparisons of arginase with the related binuclear manganese metalloenzymes agmatinase and proclavaminic acid amidinohydrolase suggest that the evolution of substrate recognition in the arginase fold occurs by mutation of residues contained in specificity loops flanking the mouth of the active site (especially loops 4 and 5), thereby allowing diverse guanidinium substrates to be accommodated for catalysis.