BenM and CatM are distinct, but similar, LysR-type transcriptional regulators of the soil bacterium Acinetobacter sp. strain ADP1. Together, the two regulators control the expression of at least 14 genes involved in the degradation of aromatic compounds via the catechol branch of the β-ketoadipate pathway. In these studies, BenM and CatM were each purified to homogeneity to test the possibility that they regulate the expression of two additional genes, benP and benK, that are adjacent to benM on the chromosome. Each regulator bound to a DNA fragment containing the benP promoter region. Additional transcriptional studies suggested that benP and benK are co-transcribed as an operon, and a site of transcription initiation was identified. Alignment of this initiation site with those of several CatM-and BenM-regulated genes revealed common regulatory motifs. Mutants lacking both CatM and BenM failed to activate benP transcription. The ability of each protein to regulate gene expression was inferred from strains lacking either CatM or BenM that were still capable of increasing benP expression in response to cis,cis-muconate. This compound has previously been shown to induce all enzymes of the catechol branch of the β-ketoadipate pathway through a complex transcriptional circuit involving CatM and BenM. Thus, the regulated expression of the benPK operon in concert with other genes of the regulon is consistent with the model that BenP, a putative outer-membrane porin, and BenK, an inner-membrane permease, transport aromatic compounds in strain ADP1.