It has been proposed that yeast and Xenopus splicing endonucleases initially recognize features in the mature tRNA domain common to all tRNA species and that the sequence and structure of the intron are only minor determinants of splice-site selection. In accordance with this postulation, we show that yeast endonuclease splices heterologous pre-tRNATY' species from vertebrates and plants which differ in their mature domains and intron secondary structures. In contrast, wheat germ splicing endonuclease displays a pronounced preference for homologous pre-tRNA species; an extensive study of heterologous substrates revealed that neither yeast pre-tRNA species specific for leucine, serine, phenylalanine and tyrosine nor human and Xenopus pre-tRNATYr species were spliced. In order to identify the elements essential for pre-tRNA splicing in plants, we constructed chimeric genes coding for tRNA precursors with a plant intron secondary structure and with mature tRNATy' domains from yeast and Xenopus, respectively. The chimeric pre-tRNA comprising the mature tRNATyr domain from Xenopus was spliced efficiently in wheat germ extract, whereas the chimeric construct containing the mature tRNATyr domain from yeast was not spliced at all. These data indicate that intron secondary structure contributes to the specificity of plant splicing endonuclease and that unique features of the mature tRNA domain play a dominant role in enzyme-substrate recognition. We further investigated the influence of specific nucleotides in the mature domain on splicing by generating a number of mutated pre-tRNA species. Our results suggest that nucleotides located in the D stem, i.e. in the center of the pre-tRNA molecule, are recognition points for plant splicing endonuclease.