Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Among the various central nervous system (CNS) manifestations of mitochondrial disorders (MIDs), cognitive impairment is increasingly recognized and diagnosed (mitochondrial cognitive dysfunction). Aim of the review was to summarize recent findings concerning the aetiology, pathogenesis, diagnosis and treatment of cognitive decline in MIDs. Among syndromic MIDs due to mitochondrial DNA (mtDNA) mutations, cognitive impairment occurs in patients with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome, myoclonus epilepsy with ragged-red fibres syndrome, mitochondrial chronic progressive external ophthalmoplegia, Kearns-Sayre syndrome, neuropathy, ataxia and retinitis pigmentosa syndrome and maternally inherited diabetes and deafness. Among syndromic MIDs due to nuclear DNA (nDNA) mutations, cognitive decline has been reported in myo-neuro-gastro-intestinal encephalopathy, mitochondrial recessive ataxia syndrome, spinocerebellar ataxia with encephalopathy, Mohr-Tranebjaerg syndrome, leuko-encephalopathy; brain and spinal cord involvement and lactic acidosis, CMT2, Wolfram syndrome, Wolf-Hirschhorn syndrome and Leigh syndrome. In addition to syndromic MIDs, a large number of non-syndromic MIDs due to mtDNA as well as nDNA mutations have been reported, which present with cognitive impairment as the sole or one among several other CNS manifestations of a MID. Delineation of mitochondrial cognitive impairment from other types of cognitive impairment is essential to guide the optimal management of these patients. Treatment of mitochondrial cognitive impairment is largely limited to symptomatic and supportive measures. Cognitive impairment may be a CNS manifestation of syndromic as well as non-syndromic MIDs. Correct diagnosis of mitochondrial cognitive impairment is a prerequisite for the optimal management of these patients.
Among the various central nervous system (CNS) manifestations of mitochondrial disorders (MIDs), cognitive impairment is increasingly recognized and diagnosed (mitochondrial cognitive dysfunction). Aim of the review was to summarize recent findings concerning the aetiology, pathogenesis, diagnosis and treatment of cognitive decline in MIDs. Among syndromic MIDs due to mitochondrial DNA (mtDNA) mutations, cognitive impairment occurs in patients with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome, myoclonus epilepsy with ragged-red fibres syndrome, mitochondrial chronic progressive external ophthalmoplegia, Kearns-Sayre syndrome, neuropathy, ataxia and retinitis pigmentosa syndrome and maternally inherited diabetes and deafness. Among syndromic MIDs due to nuclear DNA (nDNA) mutations, cognitive decline has been reported in myo-neuro-gastro-intestinal encephalopathy, mitochondrial recessive ataxia syndrome, spinocerebellar ataxia with encephalopathy, Mohr-Tranebjaerg syndrome, leuko-encephalopathy; brain and spinal cord involvement and lactic acidosis, CMT2, Wolfram syndrome, Wolf-Hirschhorn syndrome and Leigh syndrome. In addition to syndromic MIDs, a large number of non-syndromic MIDs due to mtDNA as well as nDNA mutations have been reported, which present with cognitive impairment as the sole or one among several other CNS manifestations of a MID. Delineation of mitochondrial cognitive impairment from other types of cognitive impairment is essential to guide the optimal management of these patients. Treatment of mitochondrial cognitive impairment is largely limited to symptomatic and supportive measures. Cognitive impairment may be a CNS manifestation of syndromic as well as non-syndromic MIDs. Correct diagnosis of mitochondrial cognitive impairment is a prerequisite for the optimal management of these patients.
ObjectivesMitochondrial disorders (MIDs) frequently present as mitochondrial multiorgan disorder syndrome (MIMODS) at onset or evolve into MIMODS during the course. This study aimed to find which organs and/or tissues are most frequently affected by MIMODS, which are the most frequent abnormalities within an affected organ, whether there are typical MIMODS patterns, and to generate an MIMODS score to assess the diagnostic probability for an MID.MethodsThis is a retrospective evaluation of clinical, biochemical, and genetic investigations of adult patients with definite MIDs. A total of 36 definite MID patients, 19 men and 17 women, aged 29–82 years were included in this study. The diagnosis was based on genetic testing (n=21), on biochemical investigations (n=17), or on both (n=2).ResultsThe number of organs most frequently affected was 4 ranging from 1 to 9. MIMODS was diagnosed in 97% of patients. The organs most frequently affected were the muscle (97%), central nervous system (CNS; 72%), endocrine glands (69%), heart (58%), intestines (55%), and peripheral nerves (50%). The most frequent CNS abnormalities were leukoencephalopathy, prolonged visually evoked potentials, and atrophy. The most frequent endocrine abnormalities included thyroid dysfunction, short stature, and diabetes. The most frequent cardiac abnormalities included arrhythmias, systolic dysfunction, and hypertrophic cardiomyopathy. The most frequent MIMODS patterns were encephalomyopathy, encephalo-myo-endocrinopathy, and encepalo-myo-endocrino-cardiopathy. The mean ± 2SD MIMODS score was 35.97±27.6 (range =11–71). An MIMODS score >10 was regarded as indicative of an MID.ConclusionAdult MIDs manifest as MIMODS in the vast majority of the cases. The organs most frequently affected in MIMODS are muscles, CNS, endocrine glands, and heart. An MIMODS score >10 suggests an MID.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.