Bacterial MutS2 proteins, consisting of functional domains for ATPase, DNA-binding, and nuclease activities, play roles in DNA recombination and repair. Here we observe a mechanism for generating MutS2 expression diversity in the human pathogen Helicobacter pylori, and identify a unique MutS2 domain responsible for specific DNA-binding. H. pylori strains differ in mutS2 expression due to variations in the DNA upstream sequence containing short sequence repeats. Based on Western blots, mutS2 in some strains appears to be co-translated with the upstream gene, but in other strains (e.g. UA948) such translational coupling does not occur. Accordingly, strain UA948 had phenotypes similar to its ΔmutS2 derivative, whereas expression of MutS2 at a separate locus in UA948 (the genetically complemented strain) displayed a lower mutation rate and lower transformation frequency than did ΔmutS2. A series of truncated HpMutS2 proteins were purified and tested for their specific abilities to bind 8-oxoG-containing DNA (GO:C) and Holiday Junction structures (HJ). The specific DNA binding domain was localized to an area adjacent to the Smr nuclease domain, and it encompasses 30-amino-acid-residues containing a “KPPKNKFKPPK” motif. Gel shift assays and competition assays supported that a truncated version of HpMutS2-C12 (~12 kDa protein containing the specific DNA-binding domain) has much greater capacity to bind to HJ or GO:C DNA than to normal double stranded DNA. By studying the in vivo roles of the separate domains of HpMutS2, we observed that the truncated versions were unable to complement the ΔmutS2 strain, suggesting the requirement for coordinated function of all the domains in vivo.