Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
As a fundamental property of all fluids, diffusion plays myriad roles in both science and our daily lives. Diffusive properties of many liquids including water have been extensively studied both experimentally and theoretically, while for transition metal ions, there exist significant experimental data that have not been extensively studied theoretically. Hence, high-confidence predictions for challenging systems like radioactive ions that are biohazardous cannot be reliably generated. In this work, a workflow named ISAIAH (Ion Simulation using AMBER for dIffusion Action when Hydrated) was designed to accurately simulate the diffusion coefficients of 15 monoatomic ions with charges varying from −1 to +3 in four water models. As the results indicate, good agreement with experimental values was achieved, leading us to select 239 Pu 4+ (for which no experimental data are available) as a candidate ion to make a theoretical prediction of its diffusion coefficient in water. Among all the force field parameter sets, the ones parametrized using an augmented 12-6-4 Lennard-Jones (LJ) potential showed lower average unsigned errors (AUE) for ions of various radii and electron configurations relative to some 12-6 LJ parameters. This observation agrees well with the fact that diffusion is affected by both the hydration free energy (HFE) and the ion-oxygen distance (IOD) between solute and solvent molecules, both of which are handled well by the 12-6-4 model.
As a fundamental property of all fluids, diffusion plays myriad roles in both science and our daily lives. Diffusive properties of many liquids including water have been extensively studied both experimentally and theoretically, while for transition metal ions, there exist significant experimental data that have not been extensively studied theoretically. Hence, high-confidence predictions for challenging systems like radioactive ions that are biohazardous cannot be reliably generated. In this work, a workflow named ISAIAH (Ion Simulation using AMBER for dIffusion Action when Hydrated) was designed to accurately simulate the diffusion coefficients of 15 monoatomic ions with charges varying from −1 to +3 in four water models. As the results indicate, good agreement with experimental values was achieved, leading us to select 239 Pu 4+ (for which no experimental data are available) as a candidate ion to make a theoretical prediction of its diffusion coefficient in water. Among all the force field parameter sets, the ones parametrized using an augmented 12-6-4 Lennard-Jones (LJ) potential showed lower average unsigned errors (AUE) for ions of various radii and electron configurations relative to some 12-6 LJ parameters. This observation agrees well with the fact that diffusion is affected by both the hydration free energy (HFE) and the ion-oxygen distance (IOD) between solute and solvent molecules, both of which are handled well by the 12-6-4 model.
Saltwater stands as the most prevalent liquid on Earth. Consequently, substantial interest has been directed toward its characterization, both as an independent system and as a solvent for complex structures such as biomacromolecules. In the last few decades, special emphasis was placed on the investigation of the hydration properties of ions for the fundamental role they play in numerous chemical processes. In this study, we employed multi-wavelength Raman spectroscopy to examine the hydration shell surrounding bromide ions in solutions of simple electrolytes, specifically lithium bromide, potassium bromide, and cesium bromide, at two different concentrations. Cation-induced differences among electrolytes were observed in connection to their tendency to form ion pairs. An increased sensitivity to reveal the structure of the first hydration shell was evidenced when employing ultraviolet excitation in the 228–266 nm range, under resonance conditions with the charge transfer transition to the solvent peaked at about 200 nm. Other than a significant increase in the Raman cross-section for the OH stretching band when shifting from pure water to the solution, a larger enhancement for the Raman signal of the H–O–H bending mode over the stretching vibration was observed. Thus, the bending band plays a crucial role in monitoring the H-bond structure of water around the anions related to the charge distribution within the first hydration shell of anions, being an effective probe of hydration phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.