2022
DOI: 10.1007/978-3-031-17114-7_16
|View full text |Cite
|
Sign up to set email alerts
|

Mutual Information Scoring: Increasing Interpretability in Categorical Clustering Tasks with Applications to Child Welfare Data

Abstract: Youth in the American foster care system are significantly more likely than their peers to face a number of negative life outcomes, from homelessness to incarceration. Administrative data on these youth have the potential to provide insights that can help identify ways to improve their path towards a better life. However, such data also suffer from a variety of biases, from missing data to reflections of systemic inequality. The present work proposes a novel, prescriptive approach to using these data to provid… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 21 publications
0
0
0
Order By: Relevance