MV–MR: Multi-Views and Multi-Representations for Self-Supervised Learning and Knowledge Distillation
Vitaliy Kinakh,
Mariia Drozdova,
Slava Voloshynovskiy
Abstract:We present a new method of self-supervised learning and knowledge distillation based on multi-views and multi-representations (MV–MR). MV–MR is based on the maximization of dependence between learnable embeddings from augmented and non-augmented views, jointly with the maximization of dependence between learnable embeddings from the augmented view and multiple non-learnable representations from the non-augmented view. We show that the proposed method can be used for efficient self-supervised classification and… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.