Hypersensitivity pneumonitis (HP) is an inflammatory lung disease that develops following repeated exposure to inhaled particulate antigen. Stachybotrys chartarum (SC) is a dimorphic fungus that has been implicated in a number of respiratory illnesses, including HP (1). In this study we have developed a murine model of SC- induced HP that reproduces pathology observed in human HP and hypothesized that TLR9–mediated IL-23/IL-17 responses are required for the generation of granulomatous inflammation induced by inhaled SC. Mice that undergo i.p. sensitization and i.t. challenge with 106 SC spores developed granulomatous inflammation with multinucleate giant cells, accompanied by increased accumulation of T cells. SC sensitization and challenge resulted in robust pulmonary expression of IL-17 and IL-23. SC-mediated granulomatous inflammation required intact IL-23/IL-17 responses and required TLR9, as TLR9−/− mice displayed reduced IL-17 and IL-23 expression in whole lung associated with decreased accumulation of IL-17 expressing CD4+ and γδ T cells. As compared to SC-sensitized dendritic cells (DC) isolated from WT mice, DC isolated from TLR9−/− mice had a reduced ability to produce IL-23 in responses to SC. Moreover, shRNA knockdown of IL-23 in DC abolished IL-17 production from splenocytes in response to antigen challenge. Finally, the i.t. reconstitution of IL-23 in TLR9−/− mice recapitulated the immunopathology observed in WT mice. In conclusion, our studies suggest that TLR9 is critical for development of Th17-mediated granulomatous inflammation in the lung in response to SC.