Bacteriophages infecting pathogenic hosts play an important role in medical research, not only as potential treatments for antibiotic-resistant infections, but also offering novel insights into pathogen genetics and evolution. A prominent example are cluster K mycobacteriophages infecting Mycobacterium tuberculosis, a causative agent of tuberculosis in humans. However, as handling M. tuberculosis as well as other pathogens in a laboratory remains challenging, alternative non-pathogenic relatives, such as M. smegmatis, are frequently used as surrogates to discover therapeutically relevant bacteriophages in a safer environment. Consequently, the individual host ranges of the majority of cluster K mycobacteriophages identified to date remain poorly understood. Here, we characterized the complete genome of Stinson, a temperate sub-cluster K1 mycobacteriophage with a siphoviral morphology. A series of comparative genomic analyses revealed strong similarities with other cluster K mycobacteriophages, including the conservation of an immunity repressor gene and a toxin/antitoxin gene pair. Patterns of codon usage bias across the cluster offered important insights into putative host-ranges in nature, highlighting that although all cluster K mycobacteriophages are able to infect M. tuberculosis, they are less likely to have shared an evolutionary infection history with M. leprae (underlying leprosy) compared to the rest of the genus’ host species. Moreover, sub-cluster K1 mycobacteriophages are able to integrate into the genomes of M. abscessus and M. marinum—two bacteria causing pulmonary and cutaneous infections which are often difficult to treat due to their drug resistance.