Traditional microbial diagnostic methods face many obstacles such as sample handling, culture difficulties, misidentification, and delays in determining susceptibility. The advent of artificial intelligence (AI) has markedly transformed microbial diagnostics with rapid and precise analyses. Nonetheless, ethical considerations accompany AI adoption, necessitating measures to uphold patient privacy, mitigate biases, and ensure data integrity. This review examines conventional diagnostic hurdles, stressing the significance of standardized procedures in sample processing. It underscores AI’s significant impact, particularly through machine learning (ML), in microbial diagnostics. Recent progressions in AI, particularly ML methodologies, are explored, showcasing their influence on microbial categorization, comprehension of microorganism interactions, and augmentation of microscopy capabilities. This review furnishes a comprehensive evaluation of AI’s utility in microbial diagnostics, addressing both advantages and challenges. A few case studies including SARS-CoV-2, malaria, and mycobacteria serve to illustrate AI’s potential for swift and precise diagnosis. Utilization of convolutional neural networks (CNNs) in digital pathology, automated bacterial classification, and colony counting further underscores AI’s versatility. Additionally, AI improves antimicrobial susceptibility assessment and contributes to disease surveillance, outbreak forecasting, and real-time monitoring. Despite a few limitations, integration of AI in diagnostic microbiology presents robust solutions, user-friendly algorithms, and comprehensive training, promising paradigm-shifting advancements in healthcare.