Trophic cascades-the indirect effects of carnivores on plants mediated by herbivores-are common across ecosystems, but their influence on biogeochemical cycles, particularly the terrestrial carbon cycle, are largely unexplored. Here, using a 13 C pulse-chase experiment, we demonstrate how trophic structure influences ecosystem carbon dynamics in a meadow system. By manipulating the presence of herbivores and predators, we show that even without an initial change in total plant or herbivore biomass, the cascading effects of predators in this system begin to affect carbon cycling through enhanced carbon fixation by plants. Prolonged cascading effects on plant biomass lead to slowing of carbon loss via ecosystem respiration and reallocation of carbon among plant aboveground and belowground tissues. Consequently, up to 1.4-fold more carbon is retained in plant biomass when carnivores are present compared with when they are absent, owing primarily to greater carbon storage in grass and belowground plant biomass driven largely by predator nonconsumptive (fear) effects on herbivores. Our data highlight the influence that the mere presence of predators, as opposed to direct consumption of herbivores, can have on carbon uptake, allocation, and retention in terrestrial ecosystems.experimental ecosystem ecology | animal-mediated carbon cycling | carbon tracer experiment | carbon retention T rophic downgrading-the disproportionate loss of species occupying top trophic levels of ecosystems-is a symptom of global biodiversity decline (1). Cutting short trophic chains in ecosystems causes significant changes in plant community biomass, composition, and diversity (2). These changes come about because loss of carnivores leads to increased impacts of herbivores on plant biomass through changes in herbivore density and foraging strategies (3).It is becoming increasingly recognized that the cascading effects of carnivores may affect ecosystem carbon dynamics as well. By altering the impact of herbivores on plants, carnivores may indirectly regulate the amount and type of plant biomass available for photosynthetic carbon fixation and storage (3-5). Moreover, herbivory can trigger physiological adjustments in the remaining damaged plants, including reduction in photosynthetic rates and increased respiration (6-8). Accordingly, we hypothesized that carnivores should increase plant community carbon fixation and reduce respiration, thereby increasing carbon retention, by causing herbivores to reduce their foraging impacts on plants. We tested this hypothesis with a 13 CO 2 pulse-chase field experiment in a grassland ecosystem in northeastern Connecticut.Using established methods to discern indirect effects of carnivores on plants in ecosystems (9), we applied three experimental treatments in replicated 0.25-m 2 fine-mesh enclosures (Fig. S1): (i) plants only (control), (ii) plants and herbivores (+ herbivore), and (iii) plants, herbivores, and carnivores (+ carnivore). The first treatment served as a control for animal effects, the + he...