Background
Toxoplasma gondii infection can occur through the ingestion of raw meat that contains tissue cysts or food that contains oocysts. Through the ingestion of oocysts, the parasite crosses the intestinal barrier, where the enteric nervous system is located. The objective was to investigate the kinetics of neuronal and glial responses during acute T. gondii infection.
Methods
We used 45 Wistar rats that were divided into a control group and infected groups that were evaluated at 6, 12, 24, 48, 72 hours, 7 days, 10 days, and 15 days after infection. The rats received 5000 sporulated oocysts of the parasite orally. To detect neurons and enteric glia cells, the myenteric and submucosal plexuses of the duodenum underwent double‐labeling immunohistochemical techniques to evaluate HuC/HuD and S100, HuC/HuD and ChAT, and HuC/HuD and nNOS.
Key Results
We observed a reduction of the total neuron population in the submucosal plexus 72 hours after infection. Cholinergic neurons decreased in the submucosal plexus 15 days after infection, and nitrergic neurons decreased in the myenteric plexus 72 hours after infection. A decrease in the number of glial cells was observed 7 days after infection in the submucosal plexus, and an increase in the enteric glial cell (EGC)/neuron ratio was found in both plexuses 48 hours after infection.
Conclusions and Inferences
We found decrease of neurons and increase in the EGC/neuron ratio in both plexuses caused by acute T. gondii infection, with major alterations 72 hours after oral infection.
The number of cholinergic neurons decreased in the submucosal plexus, and the number of nitrergic neurons decreased in the myenteric plexus.
A decrease in the number of enteric glial cells was observed in the submucosal plexus, and an increase in the enteric glial cell/neuron ratio was observed in both ganglionate plexuses of the duodenum.