The study of phage-host relationships is essential to understanding the dynamic of microbial systems. Here, we analyze genomewide interactions of Bacillus subtilis and its lytic phage 29 during the early stage of infection. Simultaneous high-resolution analysis of virus and host transcriptomes by deep RNA sequencing allowed us to identify differentially expressed bacterial genes. Phage 29 induces significant transcriptional changes in about 0.9% (38/4,242) and 1.8% (76/4,242) of the host protein-coding genes after 8 and 16 min of infection, respectively. Gene ontology enrichment analysis clustered upregulated genes into several functional categories, such as nucleic acid metabolism (including DNA replication) and protein metabolism (including translation). Surprisingly, most of the transcriptional repressed genes were involved in the utilization of specific carbon sources such as ribose and inositol, and many contained promoter binding-sites for the catabolite control protein A (CcpA). Another interesting finding is the presence of previously uncharacterized antisense transcripts complementary to the well-known phage 29 messenger RNAs that adds an additional layer to the viral transcriptome complexity.
IMPORTANCEThe specific virus-host interactions that allow phages to redirect cellular machineries and energy resources to support the viral progeny production are poorly understood. This study provides, for the first time, an insight into the genome-wide transcriptional response of the Gram-positive model Bacillus subtilis to phage 29 infection.
Due to their small dimension and limited size of genomes, bacteriophages have optimized the exploitation of host resources to increase the production of the viral progeny. A comprehensive understanding of these host-virus interactions requires the analysis of associated transcriptional changes in both organisms. Thus, we used the recently developed RNA sequencing (RNA-Seq) technology to monitor to a high level of accuracy and depth the genome-wide effect of the bacteriophage 29 on Bacillus subtilis transcription. The transcriptome profiles were analyzed at two early infection time points (8 and 16 min postinfection) so that the identification of the bacterial genes corresponding to these stages could allow the identification of potential phage targets.Phage 29 is a well-characterized lytic virus that belongs to the Podoviridae family. Over the years, it has been the subject of many extensive studies that have contributed to the understanding of several molecular mechanisms of biological processes, such as transcription regulation, viral DNA packaging, viral morphogenesis, and DNA replication (1). Phage 29 genome consists of a linear double-stranded DNA (dsDNA) molecule of 19,285 bp, which encodes 28 open reading frames (ORFs) transcribed from four early and one late promoters. The viral genes are expressed in a temporal sequence to ensure that DNA replication, and the production and assembly of viral components occur in an orderly fashion. Thus, bacterial cells inf...