Major depressive disorder (MDD) is a severe, disabling pathology characterized, in addition to affective, cognitive and motor symptoms, by self-focused attention and rumination. During recursive self-focused processes and rumination, the posterior cingulate cortex (PCC) is activated. In vivo proton magnetic resonance spectroscopy (MRS) is a noninvasive imaging technique that can directly assess living biochemistry in localized brain regions. The aim of this study, therefore, was to use 1 H-MRS as a means of analyzing brain metabolites in the PCC of a group of first-episode, unmedicated MDD patients. PCC metabolite levels were analyzed at 3-T in a single voxel located bilaterally over the PCC in 7 patients diagnosed for the first time with MDD and with no previous pharmacological treatment, as well as in 9 control subjects. Differences in metabolite levels between groups were compared using independent t-tests. Myo-inositol was significantly higher, and NAA + NAAG/Cr significantly lower, in MDD patients than in controls. The other brain metabolites showed no statistical differences. The present results suggest that alterations in PCC metabolite levels are likely involved in MDD pathophysiology, and may help to improve our understanding of MDD and the role of the PCC in some symptoms of depression.