Coordinating homeostasis of multiple metabolites is a major task for living organisms, and complex interconversion pathways contribute to achieving the proper balance of metabolites. AMP deaminase (AMPD) is such an interconversion enzyme that allows IMP synthesis from AMP. In this article, we show that, under specific conditions, lack of AMPD activity impairs growth. Under these conditions, we found that the intracellular guanylic nucleotide pool was severely affected. In vivo studies of two AMPD homologs, Yjl070p and Ybr284p, indicate that these proteins have no detectable AMP, adenosine, or adenine deaminase activity; we show that overexpression of YJL070c instead mimics a loss of AMPD function. Expression of the yeast transcriptome was monitored in a AMPD-deficient mutant in a strain overexpressing YJL070c and in cells treated with the immunosuppressive drug mycophenolic acid, three conditions that lead to severe depletion of the guanylic nucleotide pool. These three conditions resulted in the up-or downregulation of multiple transcripts, 244 of which are common to at least two conditions and 71 to all three conditions. These transcriptome results, combined with specific mutant analysis, point to threonine metabolism as exquisitely sensitive to the purine nucleotide balance.T HE purine nucleotides, ATP and GTP, are involved in almost all aspects of cellular life. In addition to their role as building blocks of nucleic acids, adenylic and guanylic nucleotides have specific roles. For example, GTP is critical for translation and for signaling through GTPases, while ATP is the major energyproviding molecule in the cell. In yeast, intracellular concentrations of ATP and GTP are clearly different ($5 and 1.5 mm, respectively; Breton et al. 2008;Gauthier et al. 2008), most probably as the result of regulatory processes that maintain homeostasis. In most eukaryotic cells, including yeast, adenylic and guanylic nucleotides either are synthesized from a common precursor (IMP) or are recycled from preformed bases or nucleosides (Figure 1). While most enzymes involved in these processes have been identified, the physiological consequences of purine nucleotide imbalance are far from being understood. Interestingly, drugs specifically inhibiting GTP synthesis, such as mycophenolic acid (MPA), have a strong immunosuppressive effect and are now widely used to limit allograft rejection. We have previously established the effect of MPA on the yeast proteome and have identified numerous yeast mutants hypersensitive to this drug (Desmoucelles et al. 2002). MPA effects are due to GTP shortage, since they are reversed by exogenous guanine, allowing replenishment of the GTP pool. However, drugs often have secondary effects and can be detoxified and/or diluted during cell growth. As an alternative, consequences of purine nucleotide imbalance can be investigated using yeast mutants. In two previous studies, we have used specific mutants to increase the GTP pool or decrease the ATP pool (Breton et al. 2008;Gauthier et al. 20...