Pulmonary hypertension (PH) results in RV hypertrophy, fibrosis and dysfunction resulting in RV failure which is associated with impaired RV metabolism and mitochondrial respiration. Mitochondrial supercomplexes (mSC) are assemblies of multiple electron transport chain (ETC) complexes that consist of physically associated complex I, III and IV that may enhance respiration and lower ROS generation. The goal of this study was to determine if mSCs are reduced in RV dysfunction associated with PH. We induced PH in Sprague-Dawley rats by Sugen/Hypoxia (3 weeks) followed by normoxia (4 weeks). Control and PH rats were subjected to echocardiography, blue and clear native-PAGE to assess mSC abundance and activity, and cardiomyocyte isolation to assess mitochondrial reactive oxygen species (ROS). mSC formation was also assessed in explanted human hearts with and without RV dysfunction. RV activity of CI and CIV and abundance of CI, CIII and CIV in mitochondrial mSCs was severely reduced in PH rats compared to control. There were no differences in total CI or CIV activity or abundance in smaller ETC assemblies. There were no changes in both RV and LV of expression of representative ETC complex subunits. PAT, TAPSE and RV Wall thickness significantly correlated with CIV and CI activity in mSC, but not total CI and CIV activity in the RV. Consistent with reduced mSC activity, isolated PH RV myocytes had increased mitochondrial ROS generation compared to control. Reduced mSC activity was also demonstrated in explanted human RV tissue from patients undergoing cardiac transplant with RV dysfunction. The right atrial pressure/pulmonary capillary wedge pressure ratio (RAP/PCWP, an indicator of RV dysfunction) negatively correlated with RV mSC activity level. In conclusion, reduced assembly and activity of mitochondrial mSC is correlated with RV dysfunction in PH rats and humans with RV dysfunction.