Cystic fibrosis (CF), the most common autosomal recessive lethal disease in Caucasians, causes chronic pulmonary disease and can lead to cor pulmonale with right ventricular dysfunction. The presence of the cystic fibrosis transmembrane conductance regulator (CFTR) in cardiac myocardia has prompted debate regarding possible defective ion channel-induced cardiomyopathy. Clinical heart disease in CF is considered rare and is restricted to case reports. It has been unclear if this is due to the lack of physiological importance of CFTR in the heart, the relatively short lifespan of those with CF, or a technical inability to detect subclinical disease. Extensive echocardiographic investigations have yielded contradictory results, leading to the dogma that left ventricular defects in CF occur secondary to lung disease. In this review, we consider why studies examining heart function in CF have not provided clarity on this topic. We then focus on data from new echocardiographic and magnetic resonance imaging technology, which are providing greater insight into cardiac function in CF and demonstrating that, in addition to secondary effects from pulmonary disease, there may be an intrinsic primary defect in the CF heart. With advancing lifespans and activity levels, understanding the risk of cardiac disease is vital to minimizing morbidity in adults with CF.