Expression of the STAT3 transcription factor in the heart is cardioprotective and decreases the levels of reactive oxygen species. Recent studies indicate that a pool of STAT3 resides in the mitochondria where it is necessary for the maximal activity of complexes I and II of the electron transport chain. However, it has not been explored whether mitochondrial STAT3 modulates cardiac function under conditions of stress. Transgenic mice with cardiomyocyte-specific overexpression of mitochondria-targeted STAT3 with a mutation in the DNA-binding domain (MLS-STAT3E) were generated. We evaluated the role of mitochondrial STAT3 in the preservation of mitochondrial function during ischemia. Under conditions of ischemia heart mitochondria expressing MLS-STAT3E exhibited modest decreases in basal activities of complexes I and II of the electron transport chain. In contrast to WT hearts, complex I-dependent respiratory rates were protected against ischemic damage in MLS-STAT3E hearts. MLS-STAT3E prevented the release of cytochrome c into the cytosol during ischemia. In contrast to WT mitochondria, ischemia did not augment reactive oxygen species production in MLS-STAT3E mitochondria likely due to an MLS-STAT3E-mediated partial blockade of electron transport through complex I. Given the caveat of STAT3 overexpression, these results suggest a novel protective mechanism mediated by mitochondrial STAT3 that is independent of its canonical activity as a nuclear transcription factor. STAT3 was originally identified as an IL-6-induced transcriptional activator of acute phase genes (1). However, other members of the IL-6 family, which utilize gp-130 receptor, as well as leptin, IL-12, IFN␣/, IL-10, GM-CSF, several growth factors, oncogenes, and stress such as hypoxia, also activate STAT3 (1). STAT3 is vital to embryonic development and STAT3-null mice are embryonic lethal (2). Analysis of tissuespecific conditional STAT3 knock-out mice has provided strong evidence that transcriptional activity of STAT3 plays a central role in the control of cell growth and host responses to inflammation and cellular stress (1). STAT3 positively regulates expression of anti-apoptotic (Bcl-2 and Bcl-xL) (1) and antioxidative proteins (MnSOD and metallothionein-1 and -2) (3, 4).Expression of STAT3 in the heart is associated with cardiac survival (5). When STAT3 is selectively deleted in cardiomyocytes, mice develop enhanced cardiac inflammation with fibrosis, dilated cardiomyopathy, and die prematurely due to congestive heart failure (5). Female mice, where STAT3 is not expressed in cardiomyocytes, develop post-partum cardiomyopathy, which is also seen in humans with reduced STAT3 expression in the myocardium (6). Ventricles from STAT3-null hearts show elevated levels of reactive oxygen species (ROS) 2 (6). Ischemic and pharmacologic preconditioning protected the viability of wild type but not STAT3 Ϫ/Ϫ cardiomyocytes (5). When STAT3 is overexpressed in cardiomyocytes, mice are less sensitive to the cardiotoxic effects of doxorubicin, which exerts i...