Nuclear respiratory factors NRF1 and NRF2 regulate the expression of nuclear genes encoding heme biosynthetic enzymes, proteins required for mitochondrial genome transcription and protein import, and numerous respiratory chain subunits. NRFs thereby coordinate the expression of nuclear and mitochondrial genes relevant to mitochondrial biogenesis and respiration. Only two of the nuclear-encoded respiratory chain subunits have evolutionarily conserved tissue-specific forms: the cytochrome c oxidase (COX) subunits VIa and VIIa heart/muscle (H) and ubiquitous (L) isoforms. We used genome comparisons to conclude that the promoter regions of COX6A H and COX7A H lack NRF sites but have conserved myocyte enhancer factor 2 (MEF2) elements. We show that MEF2A mRNA is induced with forced expression of NRF1 and that the MEF2A 5-regulatory region contains an evolutionarily conserved canonical element that binds endogenous NRF1 in chromatin immunoprecipitation (ChIP) assays. NRF1 regulates MEF2A promoter-reporters according to overexpression, RNA interference underexpression, and promoter element mutation studies. As there are four mammalian MEF2 isotypes, we used an isoform-specific antibody in ChIP to confirm MEF2A binding to the COX6A H promoter. These findings support a role for MEF2A as an intermediary in coordinating respiratory chain subunit expression in heart and muscle through a NRF1 3 MEF2A 3 COX H transcriptional cascade. MEF2A also bound the MEF2A and PPARGC1A promoters in ChIP, placing it within a feedback loop with PGC1␣ in controlling NRF1 activity. Interruption of this cascade and loop may account for striated muscle mitochondrial defects in mef2a null mice. Our findings also account for the previously described indirect regulation by NRF1 of other MEF2 targets in muscle such as GLUT4.
The electron transport chain (ETC)4 consists of four multisubunit enzyme complexes within the inner mitochondrial (mito) membrane. These act in concert to transfer electrons from succinate or NADH to molecular oxygen while pumping protons from the matrix to the intermembranous space, establishing the electrochemical gradient required for oxidative phosphorylation (OXPHOS) (1). Nuclear genes encode all of the components of complex II, but the other complexes have subunits encoded by both mito (ETC mito ) and nuclear (ETC nucl ) genes (1, 2). Appropriate ETC subunit stoichiometry requires the coordinate expression of genes on the two genomes and an accounting for a variable number of mito genomes per cell (2, 3). This is orchestrated by the nuclear respiratory (transcription) factors, NRF1 and NRF2 (2-5). These structurally unrelated factors, encoded by nuclear genes, regulate the transcription of TFAM, TFB1M, and TFB2M, nuclear genes of the mito transcription factor Tfam (mtTFA) (6) and Tfbm specificity factors (7). Tfam and Tfbm proteins are imported into mito where they direct transcription from both heavy and light strands of mito DNA (mtDNA). These transcripts are processed to yield the various ETC mito mRNAs, as well as rRN...