Burying beetles (Nicrophorus sp.) are necrophagous insects with developed parental care. Genome of Nicrophorus vespilloides has been recently sequenced, which makes them interesting model organism in behavioral ecology. However, we know very little about their physiology, including the functioning of their neuroendocrine system. In this study, one of the physiological activities of proctolin, myosuppressin (Nicve-MS), myoinhibitory peptide (Trica-MIP-5) and the short neuropeptide F (Nicve-sNPF) in N. vespilloides have been investigated. The tested neuropeptides were myoactive on N. vespilloides hindgut. After application of the proctolin increased hindgut contraction frequency was observed (EC value was 5.47 × 10 mol/L). The other tested neuropeptides led to inhibition of N. vespilloides hindgut contractions (Nicve-MS: IC = 5.20 × 10 mol/L; Trica-MIP-5: IC = 5.95 × 10 mol/L; Nicve-sNPF: IC = 4.08 × 10 mol/L). Moreover, the tested neuropeptides were immunolocalized in the nervous system of N. vespilloides. Neurons containing sNPF and MIP in brain and ventral nerve cord (VNC) were identified. Proctolin-immunolabeled neurons only in VNC were observed. Moreover, MIP-immunolabeled varicosities and fibers in retrocerebral complex were observed. In addition, our results have been supplemented with alignments of amino acid sequences of these neuropeptides in beetle species. This alignment analysis clearly showed amino acid sequence similarities between neuropeptides. Moreover, this allowed to deduce amino acid sequence of N. vespilloides proctolin (RYLPTa), Nicve-MS (QDVDHVFLRFa) and six isoforms of Nicve-MIP (Nicve-MIP-1-DWNRNLHSWa; Nicve-MIP-2-AWQNLQGGWa; Nicve-MIP-3-AWQNLQGGWa; Nicve-MIP-4-AWKNLNNAGWa; Nicve-MIP-5-SEWGNFRGSWa; Nicve-MIP-6- DPAWTNLKGIWa; and Nicve-sNPF-SGRSPSLRLRFa).