Protein engineering and design provide excellent tools to investigate the principles by which particular structural features relate to the mechanisms that underlie the biological function of a protein. In addition to studies aimed at dissecting the communication pathways within enzymes, recent advances in protein engineering approaches make it possible to generate enzymes with increased catalytic efficiency and specifically altered or newly introduced functions. Here, two approaches using state-of-the-art protein design and engineering are described in detail to demonstrate how key features of the myosin motor can be changed in a specific and predictable manner. First, it is shown how replacement of an actin-binding surface loop with synthetic sequences, whose flexibility and charge density is varied, can be employed to manipulate the actin affinity, the catalytic activity and the efficiency of coupling between actin-and nucleotide-binding sites of myosin motor constructs. Then the use of pre-existing molecular building blocks, which are derived from unrelated proteins, is described for manipulating the velocity and even the direction of movement of recombinant myosins.