The role of myosin isoforms in determining contractile filament velocity in the atrium and ventricle of the pig heart was studied by measuring the motion of fluorescently labeled actin over myosin (in vitro motility assay). A rapid and relatively simple method for purification of myosin from small tissue samples was used. The relative extent of light chain-2 phosphorylation was about 30% in both atrial and ventricular myosin extracts. Although the extracted myosin was not free from contaminating proteins, mainly actin, the mean velocity at optimal pH and 32 degrees C of both atrial (3.3 microns/s) and ventricular (2.3 microns/s) myosin were similar to those obtained using extensively purified myosin. The filament sliding velocities using isolated myosin and actin are lower than those estimated from previously published experiments on skinned fiber preparations, which might reflect an influence on sliding velocity by the filament organization or regulatory proteins in the muscle fiber. However, the ratio between velocities of atrial and ventricular myosin was similar in the motility assay (1.5) and muscle fiber experiments (1.6), which might suggest that these two methods reflect the same fundamental processes in cardiac contraction and that the difference in filament sliding velocity between the atrium and ventricle of the pig heart is determined my their myosin isoforms.