Die minoren Aktinoiden dominieren auf lange Sicht die Radioaktivität des gesamten abgebrannten Brennstoffes und können somit, obwohl sie nur etwa 0,2 % davon ausmachen, als die Hauptverursacher der Endlagerproblematik betrachtet werden. Neben einer möglichen Endlagerung und den damit verbundenen Problemen, bietet die Transmutation eine Alternative im Umgang mit dieser Art der radioaktiven Abfälle. Hierbei werden die minoren Aktinoide durch Neutroneneinfang zur Spaltung angeregt, wodurch sowohl deren Halbwertszeit, als auch deren Radiotoxizität deutlich reduziert werden soll. Innerhalb des in der vorliegenden Arbeit vorgestellten MYRRHA-Projektes, das im belgischen Mol realisiert werden soll, soll gezeigt werden, dass die Transmutation in einem industriellen Maßstab möglich ist. Bei MYRRHA handelt es sich um ein sog. ADS (Accelerator Driven System), bei dem ein 4 mA Protonenstrahl mit 600 MeV in einem Target aus LBE (Lead-Bismuth Eutectic) per Spallation Neutronen erzeugen soll, die für die Transmutation in einem ansonsten unterkritischen Reaktor notwendig sind. Da eine solche Anlage enorme Ansprüche an die Zuverlässigkeit des Teilchenstrahls stellt, um den thermischen Stress innerhalb des Reaktors so gering wie möglich zu halten, werden auch hohe Ansprüche an die verwendeten Kavitäten innerhalb des Beschleunigers gestellt. Besonderes Augenmerk muss hierbei auf den Injektor gelegt werden. In diesem wird der Protonenstrahl auf 16,6 MeV beschleunigt, wobei in seinem aktuellen Design nur noch normalleitende Kavitäten verwendet werden. Als erstes beschleunigendes Bauteil nach der Ionenquelle fungiert hier ein im Rahmen der vorliegenden Arbeit gebauter 4-Rod-RFQ, dessen HF-Design auf dem bereits am IAP getesteten MAX-Prototypen basiert. Für den MYRRHA-RFQ konnte eine neue Art der Dipolkompensation für 4-Rod-RFQs entwickelt werden, die bereits in anderen Beschleunigern, wie etwa dem neuen HLI-RFQ-Prototypen eingesetzt werden konnte. Hierbei werden die Stützen, auf denen die Elektroden befestigt werden alternierend verbreitert, um so den Strompfad zum niedrigeren Elektrodenpaar zu verlängern, wodurch sich die dortige Spannung erhöht. Im Zuge dieser Entwicklung wurden Simulations- und Messmethoden erarbeitet, um den Dipolanteil sowohl an bereits gebauten, wie auch an zukünftigen 4-Rod-RFQs untersuchen zu können. Der Erfolg dieser neuartigen Dipolkompensation konnte in den Low-Level-Messungen, die sich an den Zusammenbau des MYRRHA-RFQs anschlossen, validiert werden. Die CH-Sektion, die im MYRRHA-Injektor auf den RFQ und die MEBT folgt, besteht aus insgesamt 16 normalleitenden Kavitäten. Sie gliedert sich in sieben beschleunigende CHs, auf die ein CH-Rebuncher und weitere acht beschleunigende CHs folgen. Im Rahmen der vorliegenden Arbeit wurde - aufbauend auf bereits vorhandenen Entwürfen - das Design der ersten sieben CH-Strukturen des MYRRHA-Injektors erstellt und hinsichtlich seiner HF-Eigenschaften optimiert. Die dabei während den Simulationen zu CH1 auftretende Problematik einer parasitären Tunermode konnte durch zahlreiche Simulationen umgangen werden. Weiter wurde das aus der FRANZ-CH bekannte Kühlkonzept überarbeitet, um eine hohe thermische Stabilität gewährleisten zu können, wobei mehrere verschiedene Konzepte entwickelt, simuliert und bewertet wurden. Das so entwickelte HF- und Kühldesign der ersten sieben MYRRHA-CHs dient als Vorlage für die weiteren MYRRHA-CHs sowie für zukünftige Beschleunigerprojekte, wie etwa HBS am Forschungszentrum Jülich. Im Anschluss an die Designphase wurden die ersten beiden CH-Strukturen des Injektors und ein zusätzlicher dickschichtverkupferter Deckel für CH1 von den Fimen NTG und PINK gefertigt und anschließend Low-Level-Messungen unterzogen, in denen die Simulationsergebnisse bestätigt werden konnten, während diese Messungen zusätzlich als Vorbereitung für die Konditionierung dienten. Sowohl der MYRRHA-RFQ, als auch die CH-Strukturen wurden nach ihren jeweiligen Low-Level-Messungen duch eine Konditionierung auf den späteren Strahlbetrieb vorbereitet.\\ Die Konditionierung des MYRRHA-RFQ erfolgte in zwei Phasen. Zunächst wurde er in der Experimentierhalle des IAP im cw-Betrieb vorkonditioniert, bevor er nach Louvain-la-Neuve transportiert wurde. In der dort fortgesetzten Konditionierung, die sowohl gepulst, als auch im cw-Betrieb erfolgte, konnten im Rahmen dieser Arbeit 120 kW cw stabil eingkoppelt werden, wobei diese transmittierte Leistung später noch vom SCK auf bis zu 145 kW cw gesteigert wurde. Nach Abschluss der Konditionierung konnten sowohl vom IAP, als auch vom SCK Röntgenspektren aufgenommen werden, um so die Shuntimpedanz bestimmen zu können. Die Ergebnisse dieser Messungen zusammen mit der alternativen Bestimmung der Shuntimpedanz über den R/Q-Wert wurden ebenfalls in dieser Arbeit besprochen. Die CH-Kavitäten wurden im Bunker der Experimentierhalle des IAP konditioniert, wobei zusätzlich neue Konditionierungsmethoden erarbeitet und erprobt werden konnten. In den abschließenden Untersuchungen, die sich an jede der drei Konditionierungen anschlossen, konnten Erkenntnisse über das thermische Verhalten der CHs, sowie über den Einfluss verschiedener Verschaltungen des Kühlsystems darauf gewonnen werden, die bei der Installation auch zukünftiger CHs von Nutzen sein werden.