The cornea is a major protective shield of the interior of the eye and represents two thirds of its refractive power. It is made up of three tissue layers that have different developmental origins: the outer, epithelial layer develops from the ectoderm overlying the lens vesicle, whereas the stroma and the endothelium have mesenchymal origin. In the adult organism, the outermost corneal epithelium is the most exposed to environmental damage, and its constant renewal is assured by the epithelial stem cells that reside in the limbus, the circular border of the cornea. Cell turnover in the stromal layer is very slow and the endothelial cells probably do not reproduce in the adult organism. However, recent experimental evidence indicates that stem cells may be found in these layers. Damage to any of the corneal layers leads to loss of transparency and low vision. Corneal limbal stem cell deficiency results in severe ocular surface disease and its treatment by transplantating ex vivo expanded limbal epithelial cells is becoming widely accepted today. Stromal and endothelial stem cells are potential tools of tissue engineering and regenerative therapies of corneal ulcers and endothelial cell loss. In the past few years, intensive research has focused on corneal stem cells aiming to improve the outcomes of the current corneal stem cell transplantation techniques. This review summarizes the current state of knowledge on corneal epithelial, stromal and endothelial stem cells. Special emphasis is placed on the molecular markers that may help to identify these cells, and the recently revealed mechanisms that could maintain their ''stemness'' or drive their differentiation. The techniques for isolating and culturing/ expanding these cells are also described. '