Multichannel carbon nanofibers (MCNFs), characterized by complex hierarchical structures comprising multiple channels or compartments, have attracted considerable attention owing to their high porosity, large surface area, good directionality, tunable composition, and low density. In recent years, electrospinning (ESP) has emerged as a popular synthetic technique for producing MCNFs with exceptional properties from various polymer blends, driven by phase separation between polymers. These interactions, including van der Waals forces, covalent bonding, and ionic interactions, are crucial for MCNF production. Over time, the applications of MCNFs have expanded, making them one of the most intriguing topics in material research. MCNFs with tailored porous channels, controllable dimensions, confined spaces, high surface areas, designed architectures, and easy electrolyte access to active walls are considered optimal for electrochemical energy storage (EES) technologies. This review provides an exhaustive overview of the working principle, synthesis methods, and structural properties of MCNFs, and examines their advantages, limitations, and potential for producing multichannel architectures. Furthermore, this review explores the relationship between the composition of MCNF electrode materials for EES devices (supercapacitors and batteries) and their electrochemical performance. This review also addresses future directions and challenges in the development and utilization of MCNFs and provides insights into potential research avenues for advancing this exciting field.