Recent studies have indicated that the human amyloidogenic protein medin is associated with a range of vascular diseases, including aortic aneurysms, vascular dementia, and Alzheimer's disease. Medin accumulates in the vasculature with age, leading to endothelial dysfunction through oxidative and nitrative stress and inducing pro-inflammatory activation. Medin is a cleavage product from the C2 domain of MfgE8. The exact mechanism of medin production from MfgE8 is unknown, with crystal structures of homologous C2 domains suggesting that the cleavage sites are buried, requiring a conformational transition for medin production. Molecular dynamics simulations can explore a wide range of conformations, from small-scale bond rotations to large-scale changes like protein folding or ligand binding. This study employed a combination of full-atom and coarse-grained molecular dynamics simulations, along with CONCOORD- and AlphaFold2-generated models, to investigate MfgE8 conformations and their implications for medin cleavage site accessibility. The simulations revealed that MfgE8 tends to adopt a compact conformation with the RGD motif, important for cell attachment within the N-terminal domain, and the medin region in the C-terminal domain close in proximity. Formation of this compact structure is facilitated by interdomain electrostatic interactions that promote stability and in turn decrease the solvent-accessible surface area of the medin region and particularly the C-terminal medin cleavage site. This data enhances current knowledge on medin generation to propose that alterations in local environmental conditions, possibly through changes in glycosylation or other post-translational modifications are required to induce MfgE8 to unfold partially or fully: this would result in enhanced accessibility of the cleavage sites and therefore enable medin generation.