Covalent labeling with mass spectrometry is increasingly being used for the structural analysis of proteins. Diethylpyrocarbonate (DEPC) is a simple to use, commercially-available covalent labeling reagent that can readily react with a range of nucleophilic residues in proteins. We find that in intact proteins weakly nucleophilic side chains (Ser, Thr, and Tyr) can be modified by DEPC in addition to other residues such as His, Lys, and Cys, providing very good structural resolution. We hypothesize that the microenvironment around these side chains, as formed by a protein's higher order structure, tunes their reactivity such that they can be labeled. To test this hypothesis, we compare DEPC labeling reactivity of Ser, Thr, and Tyr residues in intact proteins with peptide fragments from the same proteins. Results indicate that these residues almost never react with DEPC in free peptides, supporting the hypothesis that a protein's local microenvironment tunes the reactivity of these residues. From a close examination of the structural features near the reactive residues, we find that nearby hydrophobic residues are essential, suggesting that the enhanced reactivity of certain Ser, Thr, and Tyr residues occurs due to higher local concentrations of DEPC.