Cooperative effects can be observed in various research areas in chemistry; cooperative catalysis is well-established, the assembly of compounds on surfaces can be steered by cooperative effects, and supramolecular polymerization can proceed in a cooperative manner. In biological systems, cooperativity is observed in protein-protein, protein-lipid and protein-molecule interactions. Synergistic effects are relevant in frustrated Lewis pairs, organic multispin systems, multimetallic clusters and also in nanoparticles. However, a general approach to determine cooperativity in the different chemical systems is currently not known. In the present concept paper it is suggested that, at least for simpler systems that can be described at the molecular level, cooperativity can be defined based on energy considerations. For systems in which no chemical transformation occurs, determination of interaction energies of the whole system with respect to the interaction energies between all individual component pairs (subsystems) will allow determination of cooperativity. For systems comprising of chemical transformations, cooperativity can be evaluated by determining the activation energy of the synergistic system and by comparing this with activation energies of the corresponding subsystems that lack an activating moiety. For more complex systems, cooperativity is generally determined at a qualitative level.