Different land use practices may improve soil quality or lead to soil deterioration. Recently, environmental problems, such as heavy pollution and soil erosion, have led to serious land degradation in the Taojia River basin. In this study, we explored the soil fertility characteristics (mechanical composition; pH; soil organic matter (SOM); soil total nitrogen (TN); and the activity of four enzymes, i.e., urease, hydrogen peroxide, alkaline phosphatase, and sucrose enzymes) under different types of land use in the Taojia River basin. Soil samples were taken from 0–10 cm, 10–20 cm, and 20–40 cm depths from four different land use types that were widely used in the Taojia river basin, including cultivated land, vegetable fields, woodlands, and wastelands. The results showed that the soil enzyme activity and the constituents of the soil were closely related and significantly affected each other (p < 0.05). Woodland soil exhibited the highest content of SOM in all soil depths. Soil total nitrogen mainly depended on the accumulation of biomass and the decomposition intensity of organic matter, so the changes in TN followed the trends of the changes in SOM. Woodland soil showed an improved mechanical composition. We were also able to observe an increased clay content in woodland soil. Woodland soil also exhibited the reversal of soil desertification and an increase in nutrient/water retention capacity. Therefore, an increase in woodland areas would be an appropriate goal in terms of land use in order to improve the eco-environmental quality of the Taojia River basin.