Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We consider the existence of solutions of the following weighted problem: { L : = - d i v ( ρ ( x ) | ∇ u | N - 2 ∇ u ) + ξ ( x ) | u | N - 2 u = f ( x , u ) i n B u > 0 i n B u = 0 o n ∂ B , \left\{ {\matrix{{L: = - div\left( {\rho \left( x \right){{\left| {\nabla u} \right|}^{N - 2}}\nabla u} \right) + \xi \left( x \right){{\left| u \right|}^{N - 2}}} \hfill & {u = f\left( {x,u} \right)} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u > 0} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u = 0} \hfill & {on} \hfill & {\partial B,} \hfill \cr } } \right. where B is the unit ball of ℝ N , N #62; 2, ρ ( x ) = ( log e | x | ) N - 1 \rho \left( x \right) = {\left( {\log {e \over {\left| x \right|}}} \right)^{N - 1}} the singular logarithm weight with the limiting exponent N − 1 in the Trudinger-Moser embedding, and ξ(x) is a positif continuous potential. The nonlinearities are critical or subcritical growth in view of Trudinger-Moser inequalities of double exponential type. We prove the existence of positive solution by using Mountain Pass theorem. In the critical case, the function of Euler Lagrange does not fulfil the requirements of Palais-Smale conditions at all levels. We dodge this problem by using adapted test functions to identify this level of compactness.
We consider the existence of solutions of the following weighted problem: { L : = - d i v ( ρ ( x ) | ∇ u | N - 2 ∇ u ) + ξ ( x ) | u | N - 2 u = f ( x , u ) i n B u > 0 i n B u = 0 o n ∂ B , \left\{ {\matrix{{L: = - div\left( {\rho \left( x \right){{\left| {\nabla u} \right|}^{N - 2}}\nabla u} \right) + \xi \left( x \right){{\left| u \right|}^{N - 2}}} \hfill & {u = f\left( {x,u} \right)} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u > 0} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u = 0} \hfill & {on} \hfill & {\partial B,} \hfill \cr } } \right. where B is the unit ball of ℝ N , N #62; 2, ρ ( x ) = ( log e | x | ) N - 1 \rho \left( x \right) = {\left( {\log {e \over {\left| x \right|}}} \right)^{N - 1}} the singular logarithm weight with the limiting exponent N − 1 in the Trudinger-Moser embedding, and ξ(x) is a positif continuous potential. The nonlinearities are critical or subcritical growth in view of Trudinger-Moser inequalities of double exponential type. We prove the existence of positive solution by using Mountain Pass theorem. In the critical case, the function of Euler Lagrange does not fulfil the requirements of Palais-Smale conditions at all levels. We dodge this problem by using adapted test functions to identify this level of compactness.
<p style='text-indent:20px;'>This work comes to complete some previous ones of ours. Actually, in this paper, we establish some singular weighted inequalities of Trudinger-Moser type for radial functions defined on the whole euclidean space <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^N,\ N \geq 2. $\end{document}</tex-math></inline-formula> The weights considered are of logarithmic type. The singularity plays a capital role to prove the sharpness of the inequalities. These inequalities are later improved using some concentration-compactness arguments. The last part in this work is devoted to the application of the inequalities established to some singular elliptic nonlinear equations involving a new growth conditions at infinity of exponential type.</p>
In this paper, we are concerned with the existence of a ground state solution for a logarithmic weighted biharmonic equation under Dirichlet boundary conditions in the unit ball of . The reaction term of the equation is assumed to have exponential growth, in view of Adams' type inequalities. It is proved that there is a ground state solution using min‐max techniques and the Nehari method. The associated energy functional loses compactness at a certain level. An appropriate asymptotic condition allows us to bypass the non‐compactness levels of the functional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.