The lipidic modification of proteins has recently been shown to be of immense importance, although many of the roles of these modifications remain as yet unidentified. One of such key modifications occurring on several proteins is the covalent addition of a 14-carbon long saturated fatty acid, a process termed myristoylation. Myristoylation can occur during both co-translational protein synthesis and posttranslationally, confers lipophilicity to protein molecules, and controls protein functions. The protein myristoylation process is catalyzed by the enzyme Nmyristoyltransferase (NMT), which exists as two isoforms: NMT1 and NMT2. NMT1 is essential for growth and development, during which rapid cellular proliferation is required, in a variety of organisms. NMT1 is also reported to be elevated in many cancerous states, which also involve rapid cellular growth, albeit in an unwanted and uncontrolled manner. The delineation of myristoylation-dependent cellular functions is still in a state of infancy, and many of the roles of the myristoylated proteins remain to be established. The development of cells of the leukocytic lineage represents a phase of rapid growth and development, and we have observed that NMT1 plays a role in this process. The current review outlines the roles of NMT1 in the growth and differentiation of the cells of leukocytic origin. The described studies clearly demonstrate the roles of NMT1 in the regulation of the developmental processes of the leukocytes cells and provide a basis for further research with the aim of unraveling the roles of protein myristoylation in both cellular and physiological context.