The removal of organic pollutants from water is significantly important as they have harmful effects on the ecosystem. Heterogeneous photocatalysis is a potential technique for the removal of organic pollutants from the wastewater. In this article, zinc oxide (ZnO) and samarium oxide (Sm2O3) nanoparticles and ZnO-Sm2O3 nanocomposite (ZS) were synthesized by the co-precipitation method. We report the bandgap engineering of zinc oxide (ZnO) by making a composite with samarium oxide (Sm2O3) to enhance the photocatalytic activity. The smaller optical energy bandgap of the ZS nanocomposite as compared to the individual oxide nanoparticles shows that it has a light absorption range from UV to natural light. The photodegradation of bentazon herbicide as a model pollutant has been investigated by using the prepared samples. The photocatalytic activity of the prepared sample against bentazon herbicide was carried out under UV light for 140 min. The degradation efficiency against bentazon of the prepared samples was ZS > ZnO > Sm2O3, respectively. The ZnO-Sm2O3 nanocomposite showed a higher photocatalytic performance against bentazon and achieved a 90% degradation efficiency under a UV light source in 140 min. The pseudo-first-order degradation kinetic was studied under different operational conditions, such as catalyst loading, initial pH and bentazon concentration, showing that the degradation rate of bentazon was strongly influenced by these operational parameters. The obtained optimization conditions for practical application were a catalyst loading of 20 mg, pH of solution equal to 7 and bentazon concentration of 5 ppm for ZS nanocomposite in 60 mL of contaminated water. Furthermore, based on the scavenger study, hydroxyl and superoxide radicals play major role in the degradation experiment. The obtained results show that ZS nanocomposite can be a good potential candidate for wastewater treatment.