“…A function ‖⋅, … ,⋅‖: → ℝ satisfying the following properties 1) ‖ 1 , … , ‖ ≥ 0; ‖ 1 , … , ‖ = 0 if and only if 1 , … , are linearly dependent, 2) ‖ 1 , … , ‖ is invariant under permutation, 3) ‖ 1 , … , ‖ = | | ‖ 1 , … , ‖, for any ∈ ℝ, 4) ‖ 1 + 1 ′ , 2 , … , ‖ ≤ ‖ 1 , 2 , … , ‖ + ‖ 1 ′ , 2 , … , ‖, is called an -norm on , and the pair ( , ‖⋅, … ,⋅‖) is called an -normed spaces. This concept is studied further by many researchers in later years (see for instance [5]- [9]). Using this concept, we will study bounded linear functionals on an -normed space.…”