In this work, we theoretically investigated the charge-transport properties in bisindenoanthrazoline-based n-type organic semiconductors at the first-principle DFT level based on the Marcus−Hush theory. The relationship between molecular packing and charge transport for DADF and DADK, which are of different geometries as a novel n-type bisindenoanthrazilines (BIDAs) organic semiconductor, was presented. We theoretically demonstrated that DADK single crystal possesses considerable electron-transfer mobility, which is about three times larger than that of DADF. The predicted maximum electron mobility value of DADK is 0.373 cm 2 V −1 s −1, which appears at the orientation angle near 72°/252°of conducting channel on the reference planes a−c. In addition, the angle dependence of mobility in all two crystals shows remarkable anisotropic behavior. The calculated results indicate that DADK may be an ideal candidate as a high-performance n-type organic semiconductor material. We also demonstrated that the molecular geometry of organic semiconductor plays an important role in determining the molecular stacking, electronic properties, and charge-transport behaviors. Theoretical investigation of organic semiconductors is helpful for evaluating the charge-transport behaviors to realize better charge-transfer efficiency and design higher performance electronic materials.