Efforts to describe nuclear structure and dynamics from first principles have advanced significantly in recent years. Exact methods for light nuclei are now able to include continuum degrees of freedom and treat structure and reactions on the same footing, and multiple approximate, computationally efficient many-body methods have been developed that can be routinely applied for medium-mass nuclei. This has made it possible to confront modern nuclear interactions from Chiral Effective Field Theory, that are rooted in Quantum Chromodynamics with a wealth of experimental data.Here, we discuss one of these efficient new many-body methods, the In-Medium Similarity Renormalization Group (IMSRG), and its applications in modern nuclear structure theory. The IMSRG evolves the nuclear many-body Hamiltonian in second-quantized form through continuous unitary transformations that can be implemented with polynomial computational effort. Through suitably chosen generators, we drive the matrix representation of the Hamiltonian in configuration space to specific shapes, e.g., to implement a decoupling of lowand high-energy scales, or to extract energy eigenvalues for a given nucleus.We present selected results from Multireference IMSRG (MR-IMSRG) calculations of openshell nuclei, as well as proof-of-principle applications for intrinsically deformed medium-mass nuclei. We discuss the successes and prospects of merging the (MR-)IMSRG with many-body methods ranging from Configuration Interaction to the Density Matrix Renormalization Group, with the goal of achieving an efficient simultaneous description of dynamic and static correlations in atomic nuclei.