A series of heteroleptic Ru(II) complexes were theoretically investigated using timedependent density functional theory. These dyes, including K8 and N3, are based on a common motif formed by Ru center, N]C]S, and polypyridyl ligands, but differ only by the nature of the added group in para position of each pyridyl. The presence of these ligands will enable the evaluation of the electronic effects ±I and ±M. This work focuses on the localization of the part, among the metal, the eN]C]S, the polypyridyl ligands, and the added group R, which is most actively involved in the photocatalysis process. We dealt with both ground and excited states as well as the electronic transitions between them. To illustrate the effect of each functional group R on its photophysical properties, the geometries of five dyes were optimized in the molecular and univalent cationic states. All molecules are asymmetrical in shape with a distorted octahedral coordination of the RuN6 core. Atomic charge and spin density distributions show that a charge transfer process occurs from the NCS/Ru to polypyridyl ligand. Analysis of the electronic absorption spectra reveals that the band with the highest wavelength value is assigned to metal-to-ligand charge transfer transition. On the contrary, two other bands are assigned to multitransitions Ru/NCS to polypyridylep*. These attributions have been confirmed by the localization of all atoms intervening in them. We also introduced an adapted way to estimate the ionization probability values in each atomic center in the ground and first excited states. Phenomenal properties such as mobility, redox potential, electronic spectrum, ionization potential, and optical gap of the most efficient dye, which is the N3, fit well with experimental values.