Intestinal phosphate absorption occurs through both a paracellular mechanism involving tight junctions and an active transcellular mechanism involving the type II sodium-dependent phosphate cotransporter NPT2b (SLC34a2). To define the contribution of NPT2b to total intestinal phosphate absorption, we generated an inducible conditional knockout mouse, Npt2b Inorganic phosphate is an essential mineral critical for cellular processes and bone mineralization. Severe disruptions in serum phosphate have pathologic consequences. 1,2 Hypophosphatemic disorders are associated with rickets, osteomalacia, and a host of secondary dysfunctions. 3 In contrast, hyperphosphatemia associated with chronic kidney disease (CKD) is linked tightly to increased risk of cardiovascular morbidity and mortality. 4 -6 Recent studies show that elevated phosphate concentrations within the high normal range in individuals with functional kidneys also are correlated with increased cardiovascular risk and mortality. 7,8 Thus, an elevated serum phosphate level is an emerging health risk. Despite the importance of maintaining a relatively narrow serum phosphate range, nearly 70% of dietary phosphate is absorbed, resulting in transient postprandial increases in serum phosphate concentrations. 9 Normalization of serum phosphate appears to be managed primarily within the renal proximal tubule by the type II sodium-dependent phosphate cotransporters NPT2a (SLC34a1) and NPT2c (SLC34a3). Genetic knockout mouse models demonstrate that 80% and 20% of total urinary phosphorus are managed by the Npt2a and Npt2c transporters, respectively. 10,11 Chronic and acute regulation of these renal transporters is modulated by changes in dietary and serum phosphate