There is increasing evidence that an oxidative stress not only alters cellular lipids and nucleic acids, but also numerous proteins. This oxidation results in alterations of some cellular functions, either by reversible modifications allowing a post-transcriptional regulation of enzyme activities or receptor affinities, or by irreversible modifications of the protein, triggering its inactivation and destruction. In the present work, we examined the effects of an experimental oxidative stress on rat brain microsomal cytochrome P450-dependent dealkylation activities. For that purpose, superoxide anions were produced either by the NADPH-dependent redox cycling of a quinine, menadione, or by the addition of apomorphine, which produces by autoxidation both superoxide anions and apomorphine-derived quinones. The inhibition of brain cytochrome P450-dependent alkoxyresorufin O-dealkylase activities was dependent on both menadione or apomorphine concentrations. Simultaneously, an increase of microsomal carbonyl groups was recorded. Immunoblotting characterization of brain microsomal oxidized protein was carried out, using antibodies raised against 2,4-dinitrophenylhydrazine as a reagent of protein carbonyl groups, and a revelation by a chemiluminescence method. We observed an increase in cerebral CYP1A protein oxidation, related to menadione concentration, suggesting that oxidation of cytochrome P450 protein may result in its catalytic inactivation.