The thermally coupled green band emission from excited Er 3+ ions has been used in the past to create optical thermometers, by doping the material in various types of media, particularly glasses.Glasses are known to be excellent hosts for Er 3+ ions: however, high temperatures (>900 K) are usually required for doping these ions into glasses and a non-linear temperature response is often produced. In this work, the frequently encountered drawbacks of glass-based temperature sensors have been addressed by developing a temperature sensor created at a lower temperature (543 K), by dip-coating chemically synthesized upconverting nanoparticles (UCNP -NaYF4:(18%) Yb 3+ , (2%) Er 3+ ) embedded in polydimethylsiloxane (PDMS) onto the tip of a 1000 μm optical fibre, to create the actual fibre probe. The sensor shows an excellent linear response (R 2 = 0.991) over a very useful temperature range of 295 K -473 K, with a sensitivity of 2.9 ×10 -3 K -1 , a temperature resolution of ± 2.7 K and response time of ~ 5 seconds. Additionally, a probe was investigated where a pure upconverting nanoparticle powder was coated on the tip of optical fibre and its spectral and temperature response was obtained (and cross compared with that of UCNP-PDMS composite). The results obtained from the probe development work show that the UCNP-PDMScoated optical fibre temperature sensor developed offers a better alternative to more conventional Er 3+ doped glass-based temperature sensors, in terms of the thermal budget, the synthesis process and the ease of coating, creating as a result, a very linear device response.