Powers’ model is a simple approach for estimating the relative volumes of hydration products, porosity, and chemical shrinkage present in portland cement paste as a function of its starting water‐to‐cement ratio (w/c) and current degree of hydration. It forms an important link between cement composition, microstructure, and performance, necessary for modeling cement‐based systems. Previous researchers have adapted Powers’ model for inert fillers to illustrate their effects on the hydration, porosity, and chemical shrinkage of blended cements; however, it is well‐documented that limestone is not, in fact, an inert filler, but rather participates in cement hydration through both chemical and physical processes. This research experimentally investigates the applicability of Powers’ model to modern portland cements containing up to 15% by mass finely divided limestone. The results demonstrate that the modified Powers’ model is insufficient for predicting the influence of finely divided limestone additions on the chemical shrinkage of both ordinary portland cement pastes and portland limestone cement pastes. Possible explanations for the discrepancy are discussed and a plausible source is proposed.