This review focuses on recent advances in concrete durability using graphene oxide (GO) as a nanomaterial additive, with a goal to fill the gap between concrete technology, chemical interactions, and concrete durability, whilst providing insights for the adaptation of GO as an additive in concrete construction. An overview of concrete durability applications, key durability failure mechanisms of concrete, transportation mechanisms, chemical reactions involved in compromising durability, and the chemical alterations within a concrete system are discussed to understand how they impact the overall durability of concrete. The existing literature on the durability and chemical resistance of GO-reinforced concrete and mortar was reviewed and summarized. The impacts of nano-additives on the durability of concrete and its mechanisms are thoroughly discussed, particularly focusing on GO as the primary nanomaterial and its impact on durability. Finally, research gaps, future recommendations, and challenges related to the durability of mass-scale GO applications are presented.