2023
DOI: 10.1101/2023.01.21.525028
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Nano-computed tomography reveals repeated phenotypic divergence in parasites to escape host defense

Abstract: Understanding how selective pressures drive morphological change is a central question in evolutionary biology. Feather lice have repeatedly diversified into convergent ecomorphs, based on how they escape from host defenses in different microhabitats. Here, we used nano-computed tomography scan data of 89 specimens of feather lice, belonging to four ecomorph groups to quantify variation of functional traits, including mandibular muscle volume, limb length, and three-dimensional head shape data in these tiny in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 59 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?