Abstract:In this study, SiC nanoparticles 40 nm in diameter were added to ferrocene-modified conducting polymer (FcPPy) films to improve the signal/noise ratio of a sensor. The increased porosity of the Fc-PPy/SiC nanocomposite film produces a larger active surface area with more active sites available for adsorption. Electrochemical deposition was used to fabricate nanocomposite films (PPy, Fc-PPy, PPy/SiC and Fc-PPy/SiC), on both QCM and interdigitated electrodes, to measure CO concentration. All nanocomposites were characterized using XRD, SEM and TEM. The grain sizes of the nanocomposites were measured to be between 100 nm and 500 nm after electrochemical polymerization coating. IDE chemiresistor sensors and QCM piezoelectric sensors were used to investigate the potential sensing mechanisms and adsorption-desorption kinetics of Fc-PPy/SiC nanocomposite films and to compare these films with bare PPy films. The sensitivity of Fc-PPy/SiC nanocomposite sensors to CO gas was significantly improved by the effects of the chemical activation of SiC catalyst nanoparticle additives and ferrocene modified conducting polymers.