Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The purpose of this research is to characterize and evaluate the corrosion behavior of zinc coatings used for corrosion protection, with a special focus on the S235 steel material. The introduction highlights the need for corrosion protection in industrial settings, as well as the importance of understanding corrosion processes and the development of corrosion products to develop more effective solutions. The study’s goals are to undertake an extensive analysis of corrosion products formed on the zinc coating’s surface, to evaluate the performance of these coatings under atmospheric circumstances, and to investigate the effect of deposition parameters on coating quality. The essential message provided to readers is the critical significance of knowing corrosion product formation mechanisms and zinc coating corrosion behavior in developing long-lasting and effective protection measures. The study methodology includes cycle testing, morphological and chemical examination of corrosion products, as well as optical and electron microscopy and energy-dispersive spectroscopy. Corrosion resistance is assessed using accurate measurements. The results show that zinc coatings have exceptional corrosion resistance under air settings, with the produced corrosion products offering further protection to the underlying material. Furthermore, the study demonstrates that the surface roughness of S235 steel has a substantial impact on the quality and corrosion behavior of hot-dip galvanized coatings. The findings emphasize the necessity of detailed characterization of corrosion products, the effect of depositional factors on zinc coating performance, and the need for novel corrosion protection methods. These discoveries have significant implications for the corrosion protection sector, providing the potential to improve the longevity and efficiency of protective systems used in industrial applications.
The purpose of this research is to characterize and evaluate the corrosion behavior of zinc coatings used for corrosion protection, with a special focus on the S235 steel material. The introduction highlights the need for corrosion protection in industrial settings, as well as the importance of understanding corrosion processes and the development of corrosion products to develop more effective solutions. The study’s goals are to undertake an extensive analysis of corrosion products formed on the zinc coating’s surface, to evaluate the performance of these coatings under atmospheric circumstances, and to investigate the effect of deposition parameters on coating quality. The essential message provided to readers is the critical significance of knowing corrosion product formation mechanisms and zinc coating corrosion behavior in developing long-lasting and effective protection measures. The study methodology includes cycle testing, morphological and chemical examination of corrosion products, as well as optical and electron microscopy and energy-dispersive spectroscopy. Corrosion resistance is assessed using accurate measurements. The results show that zinc coatings have exceptional corrosion resistance under air settings, with the produced corrosion products offering further protection to the underlying material. Furthermore, the study demonstrates that the surface roughness of S235 steel has a substantial impact on the quality and corrosion behavior of hot-dip galvanized coatings. The findings emphasize the necessity of detailed characterization of corrosion products, the effect of depositional factors on zinc coating performance, and the need for novel corrosion protection methods. These discoveries have significant implications for the corrosion protection sector, providing the potential to improve the longevity and efficiency of protective systems used in industrial applications.
Nosocomial infections, a prevalent issue in intensive care units due to antibiotic overuse, could potentially be addressed by metal oxide nanoparticles (NPs). However, there is still no comprehensive understanding of the impact of NPs’ size on their antibacterial efficacy. Therefore, this study provides a novel investigation into the impact of ZnO NPs’ size on bacterial growth kinetics. NPs were synthesized using a sol–gel process with monoethanolamine (MEA) and water. X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy confirmed their crystallization and size variations. ZnO NPs of 22, 35, and 66 nm were tested against the most common nosocomial bacteria: Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive). Evaluation of minimum inhibitory and bactericidal concentrations (MIC and MBC) revealed superior antibacterial activity in small NPs. Bacterial growth kinetics were monitored using optical absorbance, showing a reduced specific growth rate, a prolonged latency period, and an increased inhibition percentage with small NPs, indicating a slowdown in bacterial growth. Pseudomonas aeruginosa showed the lowest sensitivity to ZnO NPs, attributed to its resistance to environmental stress. Moreover, the antibacterial efficacy of paint containing 1 wt% of 22 nm ZnO NPs was evaluated, and showed activity against E. coli and S. aureus.
In this study, the biodegradation properties of leather treated with various finishing chemicals were evaluated in order to enhance the sustainability of leather processing. We applied advanced analytical techniques, including FT-IR, thermogravimetric analysis (TGA), and solid-state NMR spectroscopy. Leather samples treated with different polymers, resins, bio-based materials, and traditional finishing agents were subjected to a composting process under controlled conditions to measure their biodegradability. The findings revealed that bio-based polyurethane finishes and acrylic wax exhibited biodegradability, while traditional chemical finishes like isocyanate and nitrocellulose lacquer showed moderate biodegradation levels. The results indicated significant differences in the biodegradation rates and the impact on plant germination and growth. Some materials, such as black pigment, nitrocellulose lacquer and wax, were beneficial for plant growth, while others, such as polyurethane materials, had adverse effects. These results support the use of eco-friendly finishes to reduce the environmental footprint of leather production. Overall, this study underscores the importance of selecting sustainable finishing chemicals to promote eco-friendly leather-manufacturing practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.