The aim of this work was to study the crystallization kinetics and melting behaviour of polymer blend nanocomposites based on poly (L-lactic acid) (PLLA), nylon 11 and tungsten disulfide nanotubes (INT-WS2), which are layered transition metal dichalcogenides (TMDCs), using non-isothermal differential scanning calorimetry (DSC). Blends containing different nylon 11 contents ranging from 20 to 80 wt% with or without INT-WS2 were prepared by melt mixing. Evaluation of their morphology with high-resolution SEM imaging proved that the incorporation of inorganic nanotubes into the immiscible PLLA/nylon 11 mixtures led to an improvement in the dispersibility of the nylon 11 phase, a reduction in its average domain size and, consequently, an increase in its interfacial area. The crystallization temperatures of these PLLA/nylon 11-INT blends were influenced by the cooling rate and composition. In particular, the DSC results appear to demonstrate that the 1D-TMDCs WS2 within the PLLA/nylon 11-INT blend nanocomposites initiated nucleation in both polymeric components, with the effect being more pronounced for PLLA. Moreover, the nucleation activity and activation energy were calculated to support these findings. The nucleation effect of INT-WS2, which influences the melting behaviour of PLLA, is highly important, particularly when evaluating polymer crystallinity. This study opens up new perspectives for the development of advanced PLA-based nanomaterials that show great potential for ecological and biomedical applications.