GaN nano-ceramics were analyzed using transmission electron microscopy (TEM), showing that these ceramics are characterized by highly disoriented grains of the linear size of 100-150 nm. These GaN ceramics were used as substrates for GaN epitaxy in standard MOVPE conditions. For the comparison, MOVPE GaN layers on silicon substrates were grown using similar conditions. It is shown that MOVPE growth of GaN layers is highly anisotropic for both cases. However, the disorientation of the highly mismatched GaN layer on silicon is different from that characterizing GaN layer deposited on the ceramic substrate. In the latter case the disorientation is much higher, and three dimensional in nature, causing creation of polycrystalline structure having large number of the dislocations. In the case of the GaN layer grown on the silicon substrate the principal disorientation is due to rotation around c-axis, causing creation of mosaic structure of edge dislocations. Additionally, it is shown that the typical grain size in AlN nucleation layer on Si is smaller, of order of 20 nm. These two factors contribute to pronounced differences in later stage of the growth of GaN layer on the ceramic. Due to high growth anisotropy an appropriately thick GaN layer can, eventually, develop flat surfaces suitable for construction of optoelectronic and electronic structures. As shown by the TEM data, this can be achieved only at the cost of creation of the relatively large density of dislocations and stacking faults. The latter defects were not observed for the GaN growth on Si substrates.