Commercial seawater reverse osmosis (SWRO) membranes were coated with iron nanoparticles (FeNPs) and biofouled with a bacterium strain isolated from the Sea of Cortez, Mexico. This strain was selected and characterized, as it was the only cultivable strain in pretreated seawater. Molecular identification of the strain showed that it belongs to Bacillus halotolerans MCC1. This strain was Gram positive with spore production, and was susceptible to Fe +2 toxicity with a minimum inhibitory concentration of 1.8 g L −1 . Its biofouling potential on both uncoated and FeNP coated reverse osmosis (RO) membranes was measured via biofilm layer thickness, total cell count, optical density and organic matter. The FeNP-coated RO membrane presented a significant reduction in biofilm cake layer thickness (>90%), total cells (>67%), optical density (>42%) and organic matter (>92%) with respect to an uncoated commercial membrane. Thus, Bacillus halotolerans MCC1 shows great potential to biofoul RO membranes as it can pass through ultrafiltration membranes due to its spore producing ability; nonetheless, FeNP-coated membranes represent a potential alternative to mitigate RO membrane biofouling.